skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marrone, Daniel_P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The CO(1–0) line has been carefully calibrated as a tracer of molecular gas mass. However, recent studies often favor higherJtransitions of the CO molecule, which are brighter and accessible for redshift ranges where CO(1–0) is not. These lines are not perfect analogs for CO(1–0), owing to their more stringent excitation conditions, and must be calibrated for use as molecular gas tracers. Here, we introduce the Arizona Molecular ISM Survey with the SMT, a multi-CO line survey ofz∼ 0 galaxies conducted to calibrate the CO(2–1) and CO(3–2) lines. The final survey includes CO(2–1) spectra of 176 galaxies and CO(3–2) spectra for a subset of 45. We supplement these with archival CO(1–0) spectra from xCOLD GASS for all sources and additional CO(1–0) observations with the Kitt Peak 12 m Telescope. Targets were selected to be representative of the 109M≤M*≤ 1011.5Mgalaxy population. Our project emphasized careful characterization of statistical and systematic uncertainties to enable studies of trends in CO line ratios. We show that optical and CO disk sizes are on average equal, for both the CO(1–0) and CO(2–1) line. We measure the distribution of CO line luminosity ratios, finding medians (16th–84th percentile) of 0.71 (0.51–0.96) for the CO(2–1)-to-CO(1–0) ratio, 0.39 (0.24–0.53) for the CO(3–2)-to-CO(1–0) ratio, and 0.53 (0.41–0.74) for the CO(3–2)-to-CO(2–1) ratio. A companion paper presents our study of CO(2–1)'s applicability as a molecular gas mass tracer and search for trends in the CO(2–1)-to-CO(1–0) ratio. Our catalog of CO line luminosities is publicly available. 
    more » « less
  2. Abstract We present JWST and Atacama Large Millimeter/submillimeter Array (ALMA) imaging for the lensing system SPT0418−47, which includes a strongly lensed, dusty, star-forming galaxy at redshiftz= 4.225 and an associated multiply imaged companion. The JWST NIRCam and MIRI imaging observations presented in this paper were acquired as part of the Early Release Science program Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation (TEMPLATES). This data set provides robust mutiwavelength detections of stellar light in both the main (SPT0418A) and companion (SPT0418B) galaxies, while the ALMA detection of [Cii] emission confirms that SPT0418B lies at the same redshift as SPT0418A. We infer that the projected physical separation of the two galaxies is 4.42 ± 0.05 kpc. We derive total magnifications ofμ= 29 ± 1 andμ= 4.1 ± 0.7 for SPT0418A and SPT0418B, respectively. We use bothprospectorandcigaleto derive stellar masses. We find that SPT0418A has a stellar mass of M * = 3.4 0.6 + 1.1 × 10 10 M fromprospector orM*= 1.5 ± 0.3 × 1010Mfromcigale. The stellar mass ratio of SPT0418A and SPT0418B is roughly between 4 and 7 ( 4.2 1.6 + 1.9 forprospectorand 7.5 ± 3.7 forcigale). We see evidence of extended structure associated with SPT0418A that is suggestive of a tidal feature. These features, along with the close projected proximity, imply that the system is interacting. Interestingly, the star formation rates and stellar masses of both galaxies are consistent with the main sequence of star-forming galaxies at this epoch, indicating that this ongoing interaction has not noticeably elevated the star formation levels. 
    more » « less
  3. Abstract The first very long baseline interferometry (VLBI) detections at 870μm wavelength (345 GHz frequency) are reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth and the highest-frequency example of the VLBI technique to date. These include strong detections for multiple sources observed on intercontinental baselines between telescopes in Chile, Hawaii, and Spain, obtained during observations in 2018 October. The longest-baseline detections approach 11 Gλ, corresponding to an angular resolution, or fringe spacing, of 19μas. The Allan deviation of the visibility phase at 870μm is comparable to that at 1.3 mm on the relevant integration timescales between 2 and 100 s. The detections confirm that the sensitivity and signal chain stability of stations in the Event Horizon Telescope (EHT) array are suitable for VLBI observations at 870μm. Operation at this short wavelength, combined with anticipated enhancements of the EHT, will lead to a unique high angular resolution instrument for black hole studies, capable of resolving the event horizons of supermassive black holes in both space and time. 
    more » « less